Decoding Accuracy in Supplementary Motor Cortex Correlates with Perceptual Sensitivity to Tactile Roughness
نویسندگان
چکیده
Perceptual sensitivity to tactile roughness varies across individuals for the same degree of roughness. A number of neurophysiological studies have investigated the neural substrates of tactile roughness perception, but the neural processing underlying the strong individual differences in perceptual roughness sensitivity remains unknown. In this study, we explored the human brain activation patterns associated with the behavioral discriminability of surface texture roughness using functional magnetic resonance imaging (fMRI). First, a whole-brain searchlight multi-voxel pattern analysis (MVPA) was used to find brain regions from which we could decode roughness information. The searchlight MVPA revealed four brain regions showing significant decoding results: the supplementary motor area (SMA), contralateral postcentral gyrus (S1), and superior portion of the bilateral temporal pole (STP). Next, we evaluated the behavioral roughness discrimination sensitivity of each individual using the just-noticeable difference (JND) and correlated this with the decoding accuracy in each of the four regions. We found that only the SMA showed a significant correlation between neuronal decoding accuracy and JND across individuals; Participants with a smaller JND (i.e., better discrimination ability) exhibited higher decoding accuracy from their voxel response patterns in the SMA. Our findings suggest that multivariate voxel response patterns presented in the SMA represent individual perceptual sensitivity to tactile roughness and people with greater perceptual sensitivity to tactile roughness are likely to have more distinct neural representations of different roughness levels in their SMA.
منابع مشابه
Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.
Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. ...
متن کاملImprovement of tactile roughness discrimination acuity correlates with perception of improved hand function in patients after hand surgery
[Purpose] The purpose of this study was to elucidate how well patients' perceptions related to the improvements in their hand function during hospitalization. [Subjects] Sixteen patients who were hospitalized after hand surgery. [Methods] Using the Japanese Society for Surgery of the Hand edition of the Quick-Disabilities of the Arm, Shoulder, and Hand questionnaire; tactile roughness discrimin...
متن کاملNeural correlates of perceptual difference between itching and pain: a human fMRI study.
It has been wondered why we can discriminate between itching and pain as different sensations. Several researchers have investigated neural mechanisms underlying their perceptual differences, and found that some C fibers and spinothalamic tract neurons had different sensitivity between itching and pain. These findings suggest that such differences in ascending pathways are partly associated wit...
متن کاملDecoding near-threshold perception of fear from distributed single-trial brain activation.
Instead of contrasting functional magnetic resonance imaging (fMRI) signals associated with 2 conditions, as customarily done in neuroimaging, we reversed the direction of analysis and probed whether brain signals could be used to "predict" perceptual states. We probed the neural correlates of perceptual decisions by "decoding" brain states during near-threshold fear detection. Decoding was att...
متن کاملThe brain's specialized systems for aesthetic and perceptual judgment.
We recorded brain activity when 21 subjects judged the beauty (aesthetic or affective judgment) and brightness (perceptual or cognitive judgment) of simultaneously presented paintings. Aesthetic judgments engaged medial and lateral subdivisions of the orbitofrontal cortex as well as subcortical stations associated with affective motor planning (globus pallidus, putamen-claustrum, amygdala, and ...
متن کامل